Mining High Order Decision Rules
نویسنده
چکیده
We introduce the notion of high order decision rules. While a standard decision rule expresses connections between attribute values of the same object, a high order decision rule expresses connections of different objects in terms of their attribute values. An example of high order decision rules may state that “if an object x is related to another object y with respect to an attribute a, then x is related to y with respect to another attribute b.” The problem of mining high order decision rules is formulated as a process of finding connections of objects as expressed in terms of their attribute values. In order to mine high order decision rules, we use relationships between values of attributes. Various types of relationships can be used, such as ordering relations, closeness relations, similarity relations, and neighborhood systems on attribute values. The introduction of semantics information on attribute values leads to information tables with added semantics. Depending on the decision rules to be mined, one can transform the original table into another information table, in which each new entity is a pair of objects. Any standard data mining algorithm can then be used. As an example to illustrate the basic idea, we discuss in detail the mining of ordering rules.
منابع مشابه
A Novel Method of Mining Association Rule with Multilevel Concept Hierarchy
In data mining, there are several works proposed for mining the association rules which are frequent. Researchers argue that mining the infrequent item sets are also important in certain applications. Discovering association rules are based on the preset minimum support threshold given by domain experts. The accuracy in setting up this threshold directly influences the number and the quality of...
متن کاملRetaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study
This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...
متن کاملApplying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures
Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...
متن کاملUsing Data Mining and Three Decision Tree Algorithms to Optimize the Repair and Maintenance Process
The purpose of this research is to predict the failure of devices using a data mining tool. For this purpose, at the outset, an appropriate database consists of 392 records of ongoing failures in a pharmaceutical company in 1394, in the next step, by analyzing 9 characteristics and type of failure as a database class, analyzes have been used. In this regard, three decision tree algorithms have ...
متن کاملIntrusion Detection and Classification Using Improved ID3 Algorithm of Data Mining
Intrusion detection technology exists a lot of problems, such as low performance, low intelligent level, high false alarm rate, high false negative rate and so on. There is a need to develop some robust decision tree in order to produce effective decision rules from the attacked data. In this paper, ID3 decision tree classification method is used to build an effective decision tree for intrusio...
متن کامل